The upper forcing edge-to-vertex geodetic number of a graph

S.Sujitha
Holy Cross College(Autonomous)
Nagercoil-629004, India.
sujivenkit@gmail.com

Abstract

For a connected graph $G = (V, E)$, a set $S \subseteq E$ is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining some pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{ev}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an edge-to-vertex geodetic basis of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of S, denoted by $f_{ev}(S)$, is the cardinality of a minimum forcing subset of S. The upper forcing edge-to-vertex geodetic number of G, denoted by $f_{ev}^+(G)$, is $f_{ev}^+(G) = \max \{ f_{ev}(S) \}$, where the maximum is taken over all minimum edge-to-vertex geodetic sets S in G. It is shown that the upper forcing edge-to-vertex geodetic number lies between 0 and $g_{ev}(G)$. Also, the upper forcing edge-to-vertex geodetic number of certain classes of graphs such as cycle, tree, complete graph and complete bipartite graph are determined.

Keywords: edge-to-vertex geodetic number, forcing edge-to-vertex geodetic number, upper forcing edge-to-vertex geodetic number.

AMS Subject Classification(2010): 05C12.

1 Introduction

By a graph $G = (V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic definitions and terminology we refer to [1]. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u - v$ path in G. A $u - v$ path of length $d(u, v)$ is called a $u - v$ geodesic. A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices of G. The geodetic number $g(G)$ of G is the minimum order of a geodetic set and any geodetic set of order $g(G)$ is called a geodetic basis of G. The geodetic number of a graph was introduced in [1] and further studied in [5]. A set $S \subseteq E(G)$ is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{ev}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an edge-to-vertex geodetic basis of G or a g_{ev}-set of G. The edge-to-vertex geodetic number of a graph was introduced in [12] and further studied in [7]. A vertex v is an extreme vertex of a graph.
if the subgraph induced by its neighbors is complete. An edge of a connected graph G is called an extreme edge of G if one of its ends is an extreme vertex of G. For any edge e in a connected graph G, the edge-to-edge eccentricity $e_3(e)$ of e is $e_3(e) = \max \{ d(e, f) : f \in E(G) \}$. Any edge e for which $e_3(e)$ is minimum is called an edge-to-edge central edge of G and the set of all edge-to-edge central edges of G is the edge-to-edge center of G. The minimum eccentricity among the edges of G is the edge-to-edge radius, $\text{rad } G$, and the maximum eccentricity among the edges of G is the edge-to-edge diameter, $\text{diam } G$ of G. Two edges e and f are antipodal if $d(e, f) = \text{diam } G$ or $d(G)$. This concept was studied in [10]. The forcing concept was first introduced and studied in minimum dominating sets in [2] and the same in geodetic number was introduced and studied by Chartrand and Zhang in [3]. Then the forcing concept is applied in various graph parameters viz. hull sets, matching’s, edge coverings and Steiner sets in [4, 6, 9, 8, 11] by several authors. In this paper we study the upper forcing concept in minimum edge-to-vertex geodetic set of a connected graph.

Throughout the paper G denotes a connected graph with at least three vertices. The following theorems are used in the sequel.

Theorem 1.1 (12). Let G be a connected graph with size q. Then every end-edge of G belongs to every edge-to-vertex geodetic set of G.

Theorem 1.2 (12). For the complete bipartite graph $G = K_{n,n}$ ($n \geq 2$), a set S of edges of G is a minimum edge-to-vertex geodetic set if and only if S consists of n independent edges of G.

Theorem 1.3 (12). For the complete bipartite graph $G = K_{m,n}$ ($2 \leq m < n$), a set S of edges of G is a minimum edge-to-vertex geodetic set if and only if S consists of $m - 1$ independent edges of G and $n - m + 1$ adjacent edges of G.

Theorem 1.4 (12). For the complete graph $G = K_p$ ($p \geq 4$) with p even, a set S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S consists of $\frac{p}{2}$ independent edges.

Theorem 1.5 (12). For the complete graph $G = K_p$ ($p \geq 5$) with p odd, a set S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S consists of $\frac{p-3}{2}$ independent edges and two adjacent edges of G.

2 The Forcing Edge-to-vertex Geodetic Number of a Graph

For each minimum edge-to-vertex geodetic set S in a connected graph G, there is always some subset T of S such that S is the unique minimum edge-to-vertex geodetic set containing T. The maximum of such subsets T of S is considered in this section.

Definition 2.1. Let G be a connected graph and S an edge-to-vertex geodetic set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The
The upper forcing edge-to-vertex geodetic number of a graph

forcing edge-to-vertex geodetic number of \(S \), denoted by \(f_{ev}(S) \), is the cardinality of a minimum forcing subset of \(S \). The upper forcing edge-to-vertex geodetic number of \(G \), denoted by \(f^+_{ev}(G) \), is

\[f^+_{ev}(G) = \max \{ f_{ev}(S) \} \]

where the maximum is taken over all minimum edge-to-vertex geodetic sets \(S \) in \(G \).

Example 2.2. For the graph \(G \) given in Figure 1, \(S = \{ v_1v_2, v_5v_6 \} \) is the unique minimum edge-to-vertex geodetic set of \(G \) so that \(f_{ev}(S) = 0 \). For the graph \(G \) given in Figure 2, \(S_1 = \{ v_1v_2, v_3v_4, v_3v_5 \} \), \(S_2 = \{ v_1v_2, v_3v_4, v_4v_5 \} \) and \(S_3 = \{ v_1v_2, v_3v_5, v_4v_5 \} \), \(S_4 = \{ v_1v_2, v_3v_4, v_2v_5 \} \), \(S_5 = \{ v_1v_2, v_2v_3, v_4v_5 \} \) and \(S_6 = \{ v_1v_2, v_3v_5, v_2v_4 \} \) are the only \(g_{ev} \)-sets of \(G \), such that \(f_{ev}(S_1) = f_{ev}(S_2) = f_{ev}(S_3) = 2 \), and \(f_{ev}(S_4) = f_{ev}(S_5) = f_{ev}(S_6) = 1 \) so that \(f^+_{ev}(G) = \max \{ f_{ev}(S) \} = \max \{ 2, 2, 2, 1, 1 \} = 2 \).

The next theorem follows immediately from the definition of the edge-to-vertex geodetic number and the upper forcing minimum edge-to-vertex geodetic number of a connected graph \(G \).

Theorem 2.3. For every connected graph \(G \), \(0 \leq f^+_{ev}(G) \leq g_{ev}(G) \).
Since every connected graph G has one or more minimum edge-to-vertex geodetic sets and every minimum edge-to-vertex geodetic set contains at least two edges, it follows that $f_{ev}^+(G) \geq 0$. Let S be a minimum edge-to-vertex geodetic set of G and T a forcing subset of S. By definition, $T \subseteq S$. This implies that, the cardinality of T is less than or equal to the cardinality of S. That is $f_{ev}^+(G) \leq g_{ev}(G)$.

Proof: Since every connected graph G has one or more minimum edge-to-vertex geodetic sets and every minimum edge-to-vertex geodetic set contains at least two edges, it follows that $f_{ev}^+(G) \geq 0$. Let S be a minimum edge-to-vertex geodetic set of G and T a forcing subset of S. By definition, $T \subseteq S$. This implies that, the cardinality of T is less than or equal to the cardinality of S. That is $f_{ev}^+(G) \leq g_{ev}(G)$.

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G given in Figure 1, $f_{ev}^+(G) = 0$ and for the graph $G = K_3$, $f_{ev}^+(G) = g_{ev}(G) = 2$. Also, all the inequalities in the theorem are strict. For the graph G given in Figure 2, $f_{ev}^+(G) = 2$ and $g_{ev}(G) = 3$ so that $0 < f_{ev}^+(G) < g_{ev}(G)$.

In the following, we characterize graphs G for which bounds in Theorem 2.3 attained and also graph for which $f_{ev}^+(G) = 1$.

Theorem 2.5. Let G be a connected graph. Then
(a) $f_{ev}^+(G) = 0$ if and only if G has a unique minimum edge-to-vertex geodetic set.
(b) $f_{ev}^+(G) = 1$ if and only if G has at least two minimum edge-to-vertex geodetic sets, in which one element of each minimum edge-to-vertex geodetic set of G does not belong to any other minimum edge-to-vertex geodetic set of G, and
(c) $f_{ev}^+(G) = g_{ev}(G)$ if and only if there exists a minimum edge-to-vertex geodetic set of G which does not contain any proper forcing subsets.

Proof: (a) Let $f_{ev}^+(G) = 0$. Then, by definition, $f_{ev}(S) = 0$ for some minimum edge-to-vertex geodetic set S of G so that the empty set ϕ is the minimum forcing subset for S. Since the empty set ϕ is a subset of every set, it follows that S is the unique minimum edge-to-vertex geodetic set of G. Conversely, let S be the unique minimum edge-to-vertex geodetic set of G. It is clear that $f_{ev}(S) = 0$ and hence $f_{ev}^+(G) = 0$.

(b) Let $f_{ev}^+(G) = 1$. Then by Theorem 2.5(a), G has at least two minimum edge-to-vertex geodetic sets. Also, since $f_{ev}^+(G) = 1$, then by definition $f_{ev}(S) = 1$ for all S. Therefore there is a singleton subset T of a minimum edge-to-vertex geodetic set S of G such that T is not a subset of any other minimum edge-to-vertex geodetic sets of G. Thus one element of each S does not belong to any other minimum edge-to-vertex geodetic set of G. Conversely, suppose that G has at least two minimum edge-to-vertex geodetic sets, in which one element of each minimum edge-to-vertex geodetic set not containing any other minimum edge-to-vertex geodetic sets. It is clear that $f_{ev}(S) = 1$ for all minimum edge-to-vertex geodetic set S in G. Hence $f_{ev}^+(G) = \max\{f_{ev}(S)\} = 1$.

(c) Let $f_{ev}^+(G) = g_{ev}(G)$. Then $f_{ev}(S) = g_{ev}(G)$ for some minimum edge-to-vertex geodetic set S in G. Since, $q \geq 2$, $g_{ev}(G) \geq 2$ and hence $f_{ev}(S) \geq 2$. Then by Theorem 2.5(a), G has at least two minimum edge-to-vertex geodetic sets and so the empty set ϕ is not a forcing subset for any minimum edge-to-vertex geodetic set of G. Since $f_{ev}(S) = g_{ev}(G)$ for some S, there exists some minimum edge-to-vertex geodetic sets S such that no proper subset of S is a forcing subset of S. Thus there
exists at least one minimum edge-to-vertex geodetic set of G which does not contain any proper forcing subsets. Conversely, the data implies that G contains more than one minimum edge-to-vertex geodetic sets such that at least one minimum edge-to-vertex geodetic set S other than S is a forcing subset for S. Hence it follows that $f^{+}_{ev}(G) = g_{ev}(G)$.

Definition 2.6. An edge e of a connected graph G is an edge-to-vertex geodetic edge of G if e belongs to every edge-to-vertex geodetic basis of G. If G has a unique edge-to-vertex geodetic basis S, then every edge of S is an edge-to-vertex geodetic edge of G.

Example 2.7. For the graph G given in Figure 1, $S = \{v_1v_2, v_5v_6\}$ is the unique minimum edge-to-vertex geodetic set of G so that both the edges in S are edge-to-vertex geodetic edges of G.

Remark 2.8. By Theorem 1.1, each end edge of G is an edge-to-vertex geodetic edge of G. In fact there are certain edge-to-vertex geodetic edges, which are not end edges as shown in the following example.

Example 2.9. For the graph G given in Figure 3, $S_1 = \{v_1v_2, v_5v_6, v_7v_8\}$ and $S_2 = \{v_1v_2, v_5v_6, v_7v_8\}$ are the only g_{ev}-sets of G so that every g_{ev}-set contains the edge v_1v_2. Hence the edge v_1v_2 is the unique edge-to-vertex geodetic edge of G, which is not an end edge of G.

Theorem 2.10. Let G be a connected graph and S a minimum edge-to-vertex geodetic set of G. Then no edge-to-vertex geodetic edge of G belongs to any minimum forcing set of S.

Proof: Let S be a minimum edge-to-vertex geodetic set of G. Let T be a unique minimum forcing subset of S. Let e be an edge-to-vertex geodetic edge of G. By the definition $e \in S$ for all S. We show that $e \notin T$ for all T contained in S. Suppose e is in any forcing subset T of S, then e does not belong to any other minimum edge-to-vertex geodetic set of G. This implies that e is not an edge-to-vertex geodetic edge of G. Thus $e \notin T$ for all $T \subset S$.

Theorem 2.11. Let G be a connected graph and W be the set of all edge-to-vertex geodetic edges of G. Then $f^{+}_{ev}(G) \leq g_{ev}(G) - |W|$.

Proof: Let S be a minimum edge-to-vertex geodetic set of G. Then $g_{ev}(G) = |S|$, $W \subseteq S$ and S is the unique minimum edge-to-vertex geodetic set containing $S - W$. Thus $f^{+}_{ev}(G) \leq |S - W| \leq |S| - |W| = g_{ev}(G) - |W|$.
Corollary 2.12. If \(G \) is a connected graph with \(k \) end edges, then \(f_{ev}^+(G) \leq g_{ev}(G) - k \).

Proof: This follows from Theorems 1.1 and 2.11.

Remark 2.13. The bound in Theorem 2.11 is sharp. For the graph \(G \) given in Figure 3, \(S_1 = \{v_1v_2, v_6v_7, v_7v_8\}, S_2 = \{v_1v_2, v_5v_6, v_7v_8\} \) and \(S_3 = \{v_1v_2, v_5v_8, v_7v_7\} \) are the only \(g_{ev} \)-sets of \(G \) such that \(f_{ev}(S_1) = 2 \) and \(f_{ev}(S_2) = f_{ev}(S_3) = 1 \) so that \(f_{ev}^+(G) = \max\{f_{ev}(S)\} = 2 \) and \(g_{ev}(G) = 3 \). Also, every \(g_{ev} \)-set contains the edge \(v_1v_2 \) so that \(|W| = 1 \) hence \(f_{ev}^+(G) = g_{ev}(G) - |W| \). Also, the inequality in Theorem 2.11 can be strict. For the graph \(G \) given in Figure 4, \(S_1 = \{v_1v_2, v_3v_4, v_5v_6\}, S_2 = \{v_1v_4, v_2v_3, v_3v_6\} \) are the only two \(g_{ev} \)-sets of \(G \) such that \(f_{ev}(S_1) = f_{ev}(S_2) = 1 \) so that \(f_{ev}^+(G) = 1 \). Also \(g_{ev}(G) = 3 \). Here, \(v_5v_6 \) is the only edge-to-vertex geodetic edge of \(G \) and so \(f_{ev}^+(G) < g_{ev}(G) - |W| \).

![Figure 4](image_url)

In the following we determine the upper forcing edge-to-vertex geodetic number of some standard graphs.

Theorem 2.14. For an even cycle \(C_p(p \geq 4) \), a set \(S \subseteq E(G) \) is a minimum edge-to-vertex geodetic set if and only if \(S \) consists of antipodal edges.

Proof: Let \(p = 2k \) and let \(C_p : v_1, v_2, v_3, ..., v_k, v_{k+1}, ..., v_{2k}, v_1 \) be the cycle. Then the edges \(v_1v_2 \) and \(v_{k+1}v_{k+2} \) are antipodal edges. Let \(S = \{v_1v_2, v_{k+1}v_{k+2}\} \). Clearly, \(S \) is a minimum edge-to-vertex geodetic set of \(C_p \). Conversely, let \(S \) be a minimum edge-to-vertex geodetic set of \(C_p \). Then \(g_{ev}(C_p) = |S| \). Let \(S' \) be any set of pair of antipodal edges of \(C_p \). Then as in the first part of this theorem, \(S' \) is a minimum edge-to-vertex geodetic set of \(C_p \). Hence \(|S'| = |S| \). Thus \(S = \{uv, xy\} \). If \(uv \) and \(xy \) are not antipodal, then any vertex that is not on the \(uv - xy \) geodesic does not lie on the \(uv - xy \) geodesic. Thus \(S \) is not a minimum edge-to-vertex geodetic set, which is a contradiction.

Theorem 2.15. For an even cycle \(C_p(p \geq 4) \), \(f_{ev}^+(C_p) = 1 \).
The upper forcing edge-to-vertex geodetic number of a graph

Proof: If \(p \) is even, then by Theorem 2.14, every minimum edge-to-vertex geodetic set of \(C_p \) consists of pair of antipodal edges. Hence \(C_p \) has \(p/2 \) independent minimum edge-to-vertex geodetic sets and it is clear that each singleton set is the minimum forcing set for exactly one minimum edge-to-vertex geodetic set of \(C_p \). Hence it follows from Theorem 2.5 (a) and (b) that \(f_{ev}^+(C_p) = 1 \).

Theorem 2.16. For an odd cycle \(C_p (p > 5) \), \(f_{ev}^+(C_p) = 3 \).

Proof: Let \(p \) be odd. Let \(p = 2n + 1, n = 2, 3, \ldots \). Let the cycle be \(C_p : v_1, v_2, v_3, \ldots, v_{2n+1}, v_1 \).

If \(S = \{uv, xy\} \) is any set of two edges of \(C_p \), then no edge of the \(uv - xy \) longest path lies on the \(uv - xy \) geodesic in \(C_p \) and so no two element subset of \(C_p \) is an edge-to-vertex geodetic set of \(C_p \). Now, it is clear that the sets \(S_1 = \{v_1v_2, v_2v_3v_n+2, v_2v_{2n+1}\}, S_2 = \{v_1v_2, v_nv_1+1, v_2v_{2n+1}\}, S_3 = \{v_2v_3, v_{n+2}v_{n+3}, v_{2n+1}\}, \ldots, S_{2n} = \{v_nv_1+1, v_2v_{2n+1}v_{n-1}v_n\}, S_{2n+1} = \{v_nv_1+1, v_2v_{2n+1}, v_{n-1}v_n\} \) are the minimum edge-to-vertex geodetic sets of \(C_p \). (Note that there are more minimum edge-to-vertex geodetic sets of \(C_p \), for example \(S = \{v_n+2v_{n+3}, v_1v_2v_{2n+1}\} \) is a minimum edge-to-vertex geodetic set different from these). It is clear from the minimum edge-to-vertex geodetic sets \(S_i (1 \leq i \leq 2n + 1) \) that each \(\{v_iv_{i+1}\} (1 \leq i \leq 2n) \) and \(\{v_{2n+1}v_1\} \) is a subset of more than one minimum edge-to-vertex geodetic set \(S_i (1 \leq i \leq 2n + 1) \). Hence it follows from Theorem 2.5 (b) and (c) that \(f_{ev}^+(C_p) \leq 3 \). Since \(S_2 \) is the unique minimum edge-to-vertex geodetic set containing \(T = \{v_1v_2, v_{2n+1}v_1\} \), it follows that \(f_{ev}^+(S_2) = 2 \). But it is easily verified that the two element subsets of \(S_1 \) are contained in more than one minimum edge-to-vertex geodetic set \(S_i (1 \leq i \leq 2n + 1) \) so that \(f_{ev}^+(S_1) \neq 2 \) and hence \(f_{ev}^+(S_1) = 3 \). Thus \(f_{ev}^+(C_p) = 3 \).

Theorem 2.17. For the complete bipartite graph \(G = K_{n,n} (n \geq 2) \), \(f_{ev}^+(G) = n - 1 \).

Proof: Let \(X = \{u_1, u_2, \ldots, u_n\} \) and \(Y = \{v_1, v_2, \ldots, v_m\} \) be a partition of \(G \). Let \(S \) be a minimum edge-to-vertex geodetic set of \(G \). Then by Theorem 1.2, every element of \(S \) is independent and \(|S| = n \). We show that \(f_{ev}^+(G) = n - 1 \).

Case(i): Suppose that \(f_{ev}^+(G) \leq n - 2 \). Then there exists a forcing subset \(T \) of \(S \) such that \(S \) is the unique minimum edge-to-vertex geodetic set of \(G \) containing \(T \) and \(|T| \leq n - 2 \). Hence there exists at least two edges \(u_iv_j, u_{i}v_{m} \in S \) such that \(u_iv_j, u_{i}v_{m} \notin T \) and \(i \neq l, j \neq m \). Then \(S_1 = S - \{u_iv_j, u_{i}v_{m}\} \cup \{u_{i}v_{m}, u_{i}v_j\} \) is a set of \(n \) independent edges of \(G \). By Theorem 1.2, \(S_1 \) is a minimum edge-to-vertex geodetic set of \(G \) which is a contradiction to \(T \) is a forcing subset of \(S \). Hence \(f_{ev}^+(G) \leq n - 2 \) is not possible.

Case(ii): Suppose that \(f_{ev}^+(G) > n - 1 \). By Theorem 2.5(c), \(f_{ev}^+(G) = n \). Then there exists a forcing subset \(T \) of \(S \) such that \(S \) is the unique minimum edge-to-vertex geodetic set of \(G \) containing \(T \) and \(|T| = n \). Hence all the proper subsets of \(S \) having a single element, two elements, three elements, \ldots, \(n - 1 \) elements are contained in more than one minimum edge-to-vertex geodetic sets of \(G \). Let \(F \) be a proper subset of \(S \) with cardinality \(n - 1 \). Let \(S_1 \) and \(S_2 \) be the two minimum edge-to-vertex geodetic sets of \(G \) containing \(F \). Since \(S_1 \) and \(S_2 \) have \(n - 1 \) elements as common, the other \(nth \) element of \(S_1 \)
and S_2 is also same. Thus we get more than one minimum edge-to-vertex geodetic set with the same n independent edges, which is a contradiction to T is a forcing subset of S. Hence $f_{ev}^+(G) = n$ is not possible. Thus $f_{ev}^+(G) = n - 1$.

Theorem 2.18. For the complete bipartite graph $G = K_{m,n}(2 \leq m < n)$, $f_{ev}^+(G) = n - 1$.

Proof: Let $X = \{u_1, u_2, \ldots, u_n\}$ and $Y = \{v_1, v_2, \ldots, v_m\}$ be a partition of G. Let S be a minimum edge-to-vertex geodetic set of G. Then by Theorem 1.3, $S = S_1 \cup S_2$, where S_1 consists of $m - 1$ independent edges and S_2 consists of $n - m + 1$ adjacent edges and $|S| = n$. We show that $f_{ev}^+(G) = n - 1$.

Case(i): Suppose that $f_{ev}^+(G) \leq n - 2$. Then there exists a forcing subset T of S such that T is the unique minimum edge-to-vertex geodetic set of G containing T and $|T| \leq n - 2$. Hence there exists at least two edges $x, y \in S$ such that $x, y \notin T$. Let us assume that $S_2 = \{u_kv_{l1}, u_kv_{l2}, \ldots, u_kv_{ln-m+1}\}$. Suppose that $x, y \in S_1$. Then $x = u_iv_j$ and $y = u_lv_m$ such that $i \neq l$ and $j \neq m$. Now, $S_3 = S - \{x, y\} \cup \{u_iv_m, u_lv_j\}$ consists of $m - 1$ independent edges and $n - m + 1$ adjacent edges of G and also containing T. By Theorem 1.3, S_3 is a minimum edge-to-vertex geodetic set of G, which is a contradiction to T is a forcing subset of G. Suppose that $x, y \in S_2$. Let $x = u_kv_{l1}$ and $y = u_kv_{l2}$. Let u_iv_j be an edge of S_1. Now, join the vertices $v_{l2}, v_{l3}, \ldots, v_{ln-m+1}$ to u_i. Now $S_4 = S_1 - \{u_iv_j\} \cup \{u_kv_{l1}\} \cup \{u_iv_{l1}, u_iv_{l2}, u_iv_{l3}, \ldots, u_iv_{ln-m+1}\}$ consists of $m - 1$ independent edges and $n - m + 1$ adjacent edges of G. By Theorem 1.3, S_4 is a minimum edge-to-vertex geodetic set of G containing T, which is a contradiction. Suppose that $x \in S_1$ and $y \in S_2$. Let $x = u_iv_j$ and $y = u_kv_{l1}$. $S_5 = S_1 - \{u_iv_j\} \cup \{u_iv_{l1}\} \cup \{u_kv_{j}, u_kv_{l2}, u_kv_{l3}, \ldots, u_kv_{ln-m+1}\}$ consists of $m - 1$ independent edges and $n - m + 1$ adjacent edges of G and also containing T. By Theorem 1.3, S_5 is a minimum edge-to-vertex geodetic set of G, which is a contradiction to that T is a forcing subset of G. Hence $f_{ev}^+(G) \leq n - 2$ is not possible.

Case(ii): Suppose that $f_{ev}^+(G) > n - 1$. This implies that, by Theorem 2.5(c), $f_{ev}^+(G) = n$. Then there exists a forcing subset T of S such that S is the unique minimum edge-to-vertex geodetic set of G containing T and $|T| = n$. Hence all the proper subsets of S containing a single element, two elements, three elements, ..., $n - 1$ elements are contained in more than one minimum edge-to-vertex geodetic sets of G. Consider a proper subset F of cardinality $n - 1(m - 2$ independent edges and $n - m + 1$ adjacent edges). Since $f_{ev}^+(G) = n$, it is clear that the proper subset F lies more than one minimum edge-to-vertex geodetic sets of G, say S_1 and S_2. Now S_1 and S_2 have $n - 1$ elements in common. This implies that the other n^{th} independent edge of S_1 and S_2 is also same. Thus we get more than one minimum edge-to-vertex geodetic set of G with the same n independent edges which is a contradiction to that T is a forcing subset of S. Hence $f_{ev}^+(G) = n - 1$.

Theorem 2.19. For the complete graph $G = K_p(p \geq 4)$ with p even, $f_{ev}^+(G) = \frac{p-2}{2}$.

Proof: The proof is similar to the proof of Theorem 2.17.

Theorem 2.20. For the complete graph $G = K_p(p \geq 5)$ with p odd, $f_{ev}^+(G) = \frac{p-1}{2}$.
Proof: The proof is similar to the proof of Theorem 2.18.

Theorem 2.21. For a non trivial tree of size $q \geq 2$, $f_{ev}^{+}(G) = 0$.

Proof: Let G be a tree of size q. Then by Theorem 1.1, every pendent edge of G belongs to every edge-to-vertex geodetic set of G. But it is clear that, in a tree, the set of all pendent edges of G is the unique minimum edge-to-vertex geodetic set of G. Now, it follows from Theorem 2.5(a) that $f_{ev}^{+}(G) = 0$.

Theorem 2.22. For a star $G = K_{1,q}$, $f_{ev}^{+}(G) = 0$.

Proof: This follows from Theorem 2.21.

Acknowledgement
The author of this article is supported by the University Grants Commision, New Delhi, through the minor research project for teachers (UGC XII- Plan) (F.NO:4-4/2014-15(MRP-SEM/UGC-SERO))

References

